Dynamical representations of constrained multicomponent nonlinear Schrödinger equations in arbitrary dimensions

نویسندگان

چکیده

We present new approaches for solving constrained multicomponent nonlinear Schr\"odinger equations in arbitrary dimensions. The idea is to introduce an artificial time and solve extended damped second order dynamic system whose stationary solution the time-independent equation. Constraints are often considered by projection onto constraint set, here we include them explicitly into dynamical system. show applicability efficiency of methods on examples relevance modern physics applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Of Nonlinear Schrödinger Equations

The authors suggest a new powerful tool for solving group classification problems, that is applied to obtaining the complete group classification in the class of nonlinear Schrödinger equations of the form iψt +∆ψ + F (ψ,ψ ∗) = 0.

متن کامل

Forced nonlinear Schrödinger equation with arbitrary nonlinearity.

We consider the nonlinear Schrödinger equation (NLSE) in 1+1 dimension with scalar-scalar self-interaction g(2)/κ+1(ψ*ψ)(κ+1) in the presence of the external forcing terms of the form re(-i(kx+θ))-δψ. We find new exact solutions for this problem and show that the solitary wave momentum is conserved in a moving frame where v(k)=2k. These new exact solutions reduce to the constant phase solutions...

متن کامل

Collisions of two solitons in an arbitrary number of coupled nonlinear Schrödinger equations.

We show that pairwise soliton collisions in N>2 intensity-coupled nonlinear Schrödinger equations can be reduced to pairwise soliton collisions in two coupled equations. The reduction applies to a wide class of systems, including the N-component Manakov system. This greatly simplifies the analysis of such systems and has important implications for the application of soliton collisions to all-op...

متن کامل

Soliton interactions in perturbed nonlinear Schrödinger equations.

We use multiscale perturbation theory in conjunction with the inverse scattering transform to study the interaction of a number of solitons of the cubic nonlinear Schrödinger equation under the influence of a small correction to the nonlinear potential. We assume that the solitons are all moving with the same velocity at the initial instant; this maximizes the effect each soliton has on the oth...

متن کامل

Numerical study of fractional nonlinear Schrödinger equations.

Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A

سال: 2021

ISSN: ['1751-8113', '1751-8121']

DOI: https://doi.org/10.1088/1751-8121/ac0506